
Beyond the bounds of paper

but within the bounds of screens

The perfect match of TEX and Acrobat

Hans Hagen

Fall 1995



PRAGMA
Advanced Document Engineering Ridderstraat 27 8061GH Hasselt NL

tel: +31 (0)38 477 53 69 e-mail: pragma@wxs.nl ConTEXt: www.pragma-ade.nl

This paper was presented at the 1995 EuroTEX meeting in Arnhem (Netherlands). A slightly shorter version

was included in the proceedings. The article reflects the state of ConTEXt in 1995 related to pdf version 1.1.

c© PRAGMA ADE



Beyond the bounds of paperbut within the bounds of screens, The perfect match of TEX and Acrobat 1

Introduction

TEX, both a typographic programming language and a typesetting engine, has some powerful primitives, that

enable communication between its internal processes and the outside world. Of these primitives \special has

proved that, although more than 10 years old, TEX will certainly survive the next decades.

With \special we can tell other applications what special things we want them to do. It’s \special that

makes TEX one of the first systems that supports the new portable document format pdf from Adobe Systems.

Adobe supports this format with the Acrobat--family of viewers and conversion programs. pdf is a portable,

extensible, readable and programmable page description language. In fact, pdf is a subset of PostScript with

hypertext extensions. It has the duality of TEX: it’s both a programming language and a viewing engine.

At the moment pdf does not have the stability of TEX, because it’s still under development. This means that

future pdf--options can cause trouble with older Acrobat viewers. We think however that within a few years pdf

will be stable enough to become one of the most important standards in the distribution of documents. We can

still read books that are hundreds of years old. Electronic texts need a descriptive medium that is at least as

stable as paper.

One of pdf’s characteristics is interactivity. It supports active documents in which we can use all kind of

hyperlinks. One does not have to program texts in the pdf--format directly, because it can be generated from

PostScript code. The interface between the hyperlink mechanism and PostScript is provided by the PostScript

pdfmark operator. This operator accepts arrays of commands, that are unique to pdf.

pdf describes a page in terms of typography and not in terms of structure, like for instance html does. Because

html viewers format on the fly, authors and designers have no garanties of the typographic quality of their

products. With pdf however one has complete control, but the programs that are used to produce portable

documents that are highly interactive have to support pdfmarks.

When Acrobat entered the market, no programs were available that supported the generation of pdfmarks. One

reason for this is that it’s not a trivial task to include verbatim PostScript in texts. Another reason is that the

necessary positioning information is not available to users. Depending on the dvi--drivers used, TEX has the

means to include verbatim PostScript, i.e. pdfmarks. Users of TEX also have all the necessary information at

hand. That’s why only a few days after Acrobat arrived in fall 1993, we could produce interactive documents

with TEX.

Adobe claims that with Acrobat mankind will go beyond the bounds of paper. When using TEX, one is accustomed

to high quality portable output on paper. We think that Adobe (again) has proven that it is possible to produce

high quality portable output on screens too. This is however an area where software is years ahead of hardware:

most computers simply are not yet able to show this high quality, especially not portable ones.

Experimenting with TEX and Acrobat learns that new boundaries show up: those imposed by screens. Some

we can use to our advantage, some we can’t. Both programs enable us to find these boundaries. In this article

we will show some results from our experimenting. We highlight some aspects of typesetting that are closely

related to portable documents, at least we think they are. We use the terms portable document and interactive

text for documents presented on computers. We talk of screen in stead of computers and displays.

Looking at the options supported by pdfmark we see that, in version 1.0 (1993) as well as in version 2.0 (1994),

many of them are tuned to desktop publishing programs. These programs are page oriented and so are nearly

all pdfmark options. Our experiments show however that pdf lacks some document oriented options, but we

believe they will be supported in future versions.

Aspect ratios

One of the more prominent differences between paper and screen is the difference in aspect ratio. As a result

compatible layouts are nearly impossible: paper has height and screens have width. Long lines can’t be read



2 PRAGMA ADE

too well, so we can only use the full width of the screen when we use big fonts. This is why in most cases the

amount of text on the screen is limited.

The aspect ratio of screens influences the overall esthetic quality of the text. When we have a lot of tables,

figures and/or formulas and also use white space between paragraphs, it’s a tough job to get a good layout.

Because we don’t have enough height (\vsize) available for moving things around, floats do float indeed.

So, while waiting for displays with high resolutions, we have to use small fonts to get things right. When we also

pose limits on the width of the text (\hsize), we have a lot of marginspace available. But too much white space

doesn’t look to well either, especially when it’s not used. In the near future some sort of standard has to be

defined for the aspect ratio of portable documents. The Personal Data Assistents that are showing up definitely

have a different aspect ratio than desktop and portable computers.

Enhanced pagebody

Because portable documents are not as tactile as books, one needs navigation tools to manoeuvre through the

text. Navigation tools are active typographic elements, that are provided by the viewers or, which is preferred,

by the document itself. As we will see further on, we need some space to provide these navigation tools, and

fortunately the width of screens allows for this. Figure 1 shows us an example of this.

alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa

alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa

2 beta

beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta

beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta

Figure 1

Figure 2

Figure 3

alfa

gamma

delta

left 2

Figuur 1 Screen layout.

We distinguish three areas: text, margin and border. We can use the margin for marginal notes or floats and the

border for navigation tools. Not shown are the left margin and left border area. Even more room is available

when we extend the header and footer lines into these areas, as shown. Still more room is available above

header and under footer lines, but because the height is already limited, maybe we should avoid to use them.

Also not shown, and in most cases not used either, are the areas for company logos. Of course everything is

implemented and available.

At the moment we are developing and adapting the relevant macros to support a dual layout, depending on a

switch. In an interactive version floats are put in the margins and in a non--interactive version, they are placed

as specified.

Parallel documents

Reading from paper still is, and perhaps will be forever, more pleasant than reading from screen. However,

when we print a part of a portable document, with a layout adapted to the characteristics of screens, the results

look rather silly. For instance, only half of the paper is used and minimal white space is on top and left or right.

With TEX it’s not too difficult to generate different layouts from the same source. This enables us to provide

documents in different versions tuned for screen or paper. We can even offer more paper variants, like single

sided and double sided, color and grayscale, letter and A4.



Beyond the bounds of paperbut within the bounds of screens, The perfect match of TEX and Acrobat 3

alfa

alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa

beta

beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta

variant 1

variant 2

1

beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta

gamma

gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma

delta

delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta
delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta
delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta
delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta
delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta
delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta
delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta

variant 1

variant 2

2

Figuur 2 Document synchronization.

To facilitate multiple versions we have to enhance our portable document with ‘parallel document jumps’. Maybe

the most simple and elegant alternative is providing small buttons after the titles of chapters and sections, one

button for each parallel text. Although simple, it does not always look nice. A second solution lies in a visual

analogy of TEX’s \mark. We can offer the reader up to three possible jumps on each page: to the end of the

previous page (for experts: \topmark), to the first on the current page (\firstmark) and to the last on the

current page (\bot). The corresponding buttons can be placed anywhere on the page. In figure 2 we see both

alternatives. The titles are followed by two buttons, that let us jump to two alternative versions. The buttons

in the lower right corner show the jumps per page: on page 1 there are two jumps: alfa (top and first) and beta

(bot), on page 2 we have three jumps: beta (top), gamma (first) and delta (bot).

At the moment both mechanisms are implemented. They work well but a connection with the printing mecha-

nism would be nice. Technically spoken, we can launch programs with pdf, e.g. a printer driver, that prints the

corresponding pages.

Typographic interface

The user--interface of a book is contained in the book itself. The only tools we use when reading are our hands.

The look and feel of a book is determined by the designer. One of the characteristics of programs and user--

interfaces is that they change. The beauty of books is that they don’t change. Apart from their content, they

give us insight in the era in which they were written and produced. Also, in high quality books, the layout is

adapted to the content and the intended use. Although a lot of the underlaying principles are fixed and based

on years of typographic experience, books look different. So why should we give every portable document the

same interface? And what exactly is a typographic interface?

Because the medium (with such quality) is quite new, there is no unique answer to this question yet. We can

think of hot spots, menus or active words. But an interface does not have to be explicit. One may expect that

clicking in a table of contents of index may result in some kind of jump. At the moment there are many non--

interactive documents around. This means that we must provide readers with some cues, at least for the next

few years. For the moment color suffice.

KL–INDEX/EP

Boeken DEBKL
Formulieren 30.1.1996
Verzorgingspublikaties ’s–Gravenhage

publicatie

categorie

trefwoord

toelichting

helpinfo

colofon

J J I I

Figuur 3 Typographic interface.

The interface of a portable document must be determined by designers and not by programmers. The non

intelligent part of the user interface, like goto first, next, previous or last page, can be programmed by means



4 PRAGMA ADE

of references. Options like going to the previous jump or searching for words on the other hand, are to be

provided by the program. At this moment these ‘intelligent’ options are not accessible as pdfmark.

We can think of some sort of dynamic typography, but still some constraints should be defined. One day, when

computers will be real fast, TEX can be used for real--time formatting.

With Acrobat, texts can be presented full screen, i.e. without windows, standard buttons and other items. This

feature enables typographers to determine the interface. Some day there will be portable computers, tuned for

reading text, with simple manual controls, a high resolution display (≥ 300 dpi), no battery problems and lots

of memory. Personally I hope printed matter will be around for at least my lifetime. I just don’t want to think

of electronic bookstores yet. All those ‘metaphores’ or visual look--alikes will loose their meaning when one

doesn’t know the originals any more.

Selective printing

An integrated user--interface confronts us with a problem: when we print (part of) a document, we also print the

user--interface. This means that viewing programs must be able to hide marked parts of the text from printing.

Acrobat 2.0 supports embedded printer--only commands, so will probably support its counterpart, embedded

viewer--only commands, in the near future .

Layers of control

We can think of many extensions to both Acrobat and our TEX macros. One for instance is ‘layers of control’. By

this we mean that certain properties of the document, like typographic menus and statusbars, can be hidden or

made visible by users. Typographic elements that enable us to navigate through the text, don’t always add to

the beauty of the text. It would be nice if users could turn them of when they are not necessary or when they

irritate when reading.

Tables of contents

The concept of tables of contents slightly changes when developing portable documents. Acrobat provides

bookmarks. These are entries to some sort of system table of contents. Because we don’t have typographic

control over such lists and because they claim too much space on the screen we don’t use them. To be honest,

we don’t even need them because TEX can generate them.

Kwaliteit

1 Inleiding 3

2 Kwaliteit 4
2.1 Inleiding 4
2.2 Wat is kwaliteit? 4
2.3 De gebruikersgerichte benadering van kwaliteit 4
2.4 Kwaliteit en de klant 5
2.5 Interne en externe klanten 6
2.6 Kwaliteit en de organisatie 6
2.7 Kwaliteitszorg 8
2.8 Kwaliteitssysteem 10
2.9 Normalisatie 11
2.10 Normen 12
2.11 De NEN–ISO–9000–serie 13
2.12 Het documentatiesysteem 15
2.13 Kwaliteitskosten 16
2.14 De kwaliteitskostengrafiek van Juran 17

3 Meting van kwaliteit 20
3.1 Inleiding 20
3.2 Spreiding en tolerantie 20
3.3 Het gemiddelde 21
3.4 De mediaan 23
3.5 De range 24
3.6 De standaardafwijking 24
3.7 Het in beeld brengen van gegevens 25

Index

Arbeidsomstandigheden Milieu

Figuur 4 Tables of contents.

Of course, clicking on an entry in a table of contents, has to result in a jump to the corresponding chapter or

section. Because active words are colored (as users expect), we only make the numbers of chapters and sections

active. Too much color simply doesn’t look so well. We don’t click on pagenumbers, because in many cases we

don’t show them.

Tables of contents are active by default. The necessary links are generated without any interference of the

author. That’s the way it should be and that’s the way it’s done. But to make this possible, we had to enhance the



Beyond the bounds of paperbut within the bounds of screens, The perfect match of TEX and Acrobat 5

table of contents macros, that are written to an auxiliary file, with two extra arguments: an internal referencing

number and, to accommodate Acrobat 1.0, an extra real pagenumber. We can’t use section numbers as reference,

because they are not unique —how about five chapters 1 in five parts of a manual— and sometimes they are not

even there.

We see that there can be more than one reference to a chapter or section: a hidden one, supplied by the

system and used for tables of contents, and visible, user defined ones. Actually in ConTEXt we can give lists

of references, just because chapters can handle more subjects and labels for references have to be meaningful:

\chapter[a,b,c]{Alphabet}.

Structuring elements

Not every document has chapters and sections. Quality System manuals for instance have their own ways of

structuring, often with an alternative numbering of sections. These manuals contain a lot of references, like

references to forms and specific procedures.

Beheer

Stuurketen bij een afsluiter.
Regelkring bij een afsluiter.
Niveauregeling van een reservoir.
Schematische weergave van een gedeelte van een net.
Serieschakeling.
Parallelschakeling.
Het logo van het KLIC.
Mogelijke monsterpunten in een vertakt leidingnet.
Mogelijke monsterpunten in een vermaasd leidingnet.
Een lokator t.b.v. een straatpot of metalen leiding.
Het principe van water–lucht spoelen.
Enkele voorbeelden van proppen.
Het principe van proppen.
Schoonspuiten met hogedruk.
Cementeren: schrapen van een leiding.
Cementeren: ruimen van een leiding.
Cementeren: kalibreren van een leiding.
Cementeren: inwendig cementeren van een leiding.
Relinen met behiulp van een opgevouwen buis (a).
Relinen met behiulp van een opgevouwen buis (b).
Relinen met behiulp van een opgevouwen buis (c).
Relinen met behulp van een kous: inbrengen.
Relinen met behulp van een kous: uitharden.
Lekdetectie met behulp van afluisterapparatuur.
Lekdetectie met behulp van tracergas.
Het principe achter de correlatormethode.

inleiding

waterkwaliteit

waterzuivering

Beheer

eerste vorige volgende laatste

Figuur 5 Structuring elements.

A consistent system of numbering is a necessity for robust (automatic) referencing and local tables of contents.

This means that, when producing documents with alternative numbering, we have to supply TEX with structuring

commands like \nextchapter, which means as much as: “here we go to another level 1 structuring element”.

When using such commands, we can still produce a table of contents for this specific chapter. This problem is

not unique to portable documents, but it showed up producing them.

Multiple indexes

Indexes, of which there may be many, have to be active too. Because pagenumbers are not unique as reference,

macros had to be extended. Because an entry in an index can contain more references, resulting in more

pagenumbers after a typeset entry, we make those references active. Of course we could make a jump list out

of the pagenumbers (see ‘reader profiles’ below), but this has no real use.

Pagenumbers in portable documents seldom have a meaning, so why should we make them active and/or even

show them? But isn’t it a bit overdone to keep pagenumbers in a document for the sole purpose of a register?

That’s why we have some alternatives. Because the number itself doesn’t say much we can use substitutes like

•, or letters. It looks better and works fine.

Cross referencing

A whole book can be written on referencing and the mechanisms to support this. There are references to

structuring elements, like chapters and sections, and to typographic ones, like figures and tables. Referencing

can be done by page or by text: see page 5 or see also figure 3.1. Portable documents offer some more, like

references to locations: highlighted words in the text that one can click on. Clicking brings us to the world

behind these words. These three types of references can be characterized by \on, \in and \to, shorthand for

on page, in something and to somewhere else. There is another one: \from, that stands for from document.



6 PRAGMA ADE

Of course there are more types of references. In portable texts we can activate (jump to) programs. We can

refer to lists of publications (\by), to items in lists, to margin words and to enumerations, like questions and

answers (all \on’s and \in’s). Although it’s best not to refer too much, electronic documents can’t do without.

It’s just one way more to navigate them.

Local and global referencing

Take a table of contents or an index. In a book, we can hold our fingers at an index page and walk through the

text with our other hand. In a portable document, there is no clear (tactile) concept of the beginning and the

end of a document. On the other hand, we can offer as much tables of contents and indices as we want, because

it doesn’t spill paper. We can for instance start each chapter with a table of contents and offer the reader the

possibility to jump to this table from each page in this chapter. For this purpose we can provide a button in

one of the margins.

It is quite logical to label a table of contents with the reference [contents]. But with many tables of contents,

let’s say one for each chapter, we can’t distinguish between them when we refer to one. This problem can

be solved by introducing reference prefixes. By giving each reference an invisible prefix, like chapter this:,

section that: or just a system supplied number, we have unique local tags and references. When a reference

can’t be solved locally, the underlying mechanism can always check if there is an not--prefixed global one. In our

example this can be the table of contents of the whole document. It’s even possible to walk through all prefixes

until one is found, but because this is not very transparent, we have this option disabled.

Maybe the mechanism described isn’t easy to understand without seeing it at work in practice. One has to take

our word that from the users point of view, things are simple. The mechanism, that most of the time operates

behind the screen, is also enhanced with cross--document referencing. We don’t think we would have needed

and developed such a complete and complex mechanism when only paper text was to be produced.

Multiple word references

Multiple word references normally only occur with \to or \from. On paper it’s no problem if a reference crosses

a line or page boundary. In an portable document we have to make each word in such a reference active. At

the moment, we don’t break up individual words. Because words belonging to the references are to be given

explicitly and references are to be broken up in individual words, the mechanism of typesetting references is a

bit more complicated than the one normally needed for paper texts.

One could state that Acrobat should handle this, but we don’t agree. Acrobat has no knowledge of the meaning

of text and the typographic used in it. Acrobat is perfectly able to recognize words and its search engine works

fine —in version 2.0 it even accepts legislatures like ff, fl and fi!— but it would be a nearly impossible job to

guess what a typographer means. Do we want to let the user click beyond the end of a line (specified with a

pdfmark) or do we want to continue on the next line? Enhanced pdfmarks would be necessary to accomplish

this.

Exact positioning

Version 1.0 of Acrobat only had a primitive referencing mechanism: one had to supply pagenumbers. Normally,

when tagging a location to refer to, the pagenumber is remembered. A reference mechanism uses the page

numbers as they appear in the text. When we number by chapter, pagenumbers look like 6.14 or 2–4–37.

Acrobat 1.0 expected real pagenumbers. Because of this incompatibility in pagenumbers, we had to adapt our

macros. With version 2.0, referencing by label became available, so the reference mechanism could be simplified.

In fact we didn’t and now we have a dual mechanism, just in case we have to support more document formats.



Beyond the bounds of paperbut within the bounds of screens, The perfect match of TEX and Acrobat 7

object — AVCAT–installatie

AVCAT–installatie

Gebruik BOS–installatie.

averijmateriaal

Gebruik gereedschapsuitrusting.

B
badinstallatie

Het geheel van badapparatuur, het materiaal, reserve–onderdelen en de hulpuitrusting.

ballastinstallatie

Installatie die er voor zorgt dat het vaartuig vast ligt.

basisbegrip

Gebruik begrip.

bataljon

Gebruik eenheid.

batterij

Bedoeld wordt een elektrische batterij. Gebruik waar mogelijk eenheid.

bedrijfsadministratie

Gebruik administratie.

bedrijfsgereedstelling

Het installeren en voor gebruik gereedmaken van apparatuur.

bedrijfskunde

De leer en de kennis van het beheer van bedrijven.

inleiding

richtlijnen

objecten

acties

accenten

aspecten

terug

verder

Figuur 6 Exact positioning.

Before Acrobat came available, we were already experimenting with dviwindo from Y&Y. This viewer offers a

very simple, but powerful hyperlink mechanism, that only uses labels. It offers more: jumping to some location

results in an exact positioning of the cursor. When this feature comes available in Acrobat too, pdf--documents

will be more powerful. Think of dictionaries in which clicking on references like see that other word too brings

us to right page and positions the cursor at that other word.

Acrobat offers the option to magnify the target location of a jump. It is also possible to show only part of the

page. Because we layout our portable documents for screens, we don’t use this feature. We think it is better to

show the reader the page as it is, but future applications can make us change our mind. For instance, I think

it is possible to define cyclic references, e.g. clicking on a figure means going to the figure itself. Because it is

possible to magnify the target location, we could use such a cyclic reference to magnify the figure to full--screen

size (click: magnify, and click again: previous view). To accomplish this in Acrobat, one needs to specify

the part of the page that is to be magnified. Because TEX has no absolute coordinates available —as a result of

the dynamic character of composing pages— this feature can’t be used. A solution to this would be an extension

of pdf in which relative coordinates can be used.

Multiple documents

Referring to other documents was not hard to implement, but again, it required an adaption of our reference

mechanism. We already mentioned prefixes. A reference to another document is done by an extra prefix. In

[texbook::somewhere] we have the document prefix texbook::. When using multiple documents it is not

necessary to have the other documents references available when we are only using \to. When we want to refer

to text (\in, like figure 3.2) or page (\on, like see page 12 of the TEXbook ), we do have to load the references of

the other document. Each reference generates one macro, in which the several components of the reference are

packed (pagenumber, text and real pagenumber). As long as we do have enough memory available, this is no

problem. Because our macro--package ConTEXt is over three times the size of LATEX and has a memory extensive

user--interface, the memory left for names of macros is already low. Of course all references can be packed in

one macro, but only at the cost of processing time. (Packing works fine for two--pass optimization. We use lists

of references for marginword placement, float reordering, optimal list breakup, version control and more.)

Common data

Using more documents together means that they must be as consistent with each other as possible, specially

when they change a lot, like some kind of manual. This means that information sensitive to changes has to be

as abstract as possible and has to be defined only once. This is one of the powers of TEX, but at the cost of

memory. As we’ve seen before, time will solve this.

Parallel constructs

One of the first things we implemented in ConTEXt was a block--move mechanism. We use this mechanism to

relocate blocks of text, independent of their location in the ascii--text. We put the answers after the questions,



8 PRAGMA ADE

hide the answers and recall questions and answers in an appendix. It is also possible to label blocks and call

them up by name. The mechanism, that is completely handled by TEX itself, keeps track of the original structure

of the text. This is necessary because the numbers of questions and answers can be prefixed by the numbers

of chapters. It’s also necessary to keep track of the local character of blocks: do we call them up at the end of

each chapter and/or at the end of the document. In our example questions and answers can be seen as parallel

typographical constructs.

This already (in terms of macros) complicated mechanism seemed complete. But portable documents make it

possible to link corresponding blocks together: click on a question and go to the answer and vice versa. Here

we see a kind of reference that is unique to portable documents.

Alternative pagenumbers

One of the disadvantages of portable documents is its higher degree of abstractness. Numbers of pages,

megabytes and scrollbars don’t mean as much as a handful of paper or a bookshelf of volumes. Numbers

of pages have lost their meaning, because we don’t go to pages but to locations.

1 Greek

1.1 alfa

alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa

1.2 beta

beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta

1

Figuur 7 Subpagenumbering.

Because we don’t want our readers to get lost, we have to offer them some kind of status--information. One kind

of pagenumbering that makes sense is subpagenumbering. We can for instance give the reader some indication

about the length of the current section he or she is reading. We can offer small bars, one for each subpage

(screen) and highlight the current one. These bars are active: click on bar two means going to subpage two. Of

course we can give cues like page n of m, but in that case we miss the interactivity.

Status bars

We can mimic the more traditional user--interfaces. One of the advantages of this is that users know what to

expect. Although a text is no tape- or videoplayer, everyone seems to know what to do when / and . appear.

Acrobat uses // and .. to navigate through the list of jumps. This analogies is a bit strange, because video

recorders use this symbol for fast for- and backward and cdrom--players for going to a previous or next track.

We now have at least three incompatible interfaces.

1 alfa

alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa

2 beta

beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta

6

beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta

3 gamma

gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma

7

Figuur 8 Statusbars.

When we take volume 8 of 20 volumes of an encyclopedia from the shelf, we have some impression of what we

are reading. Size and structure are obvious. Portable documents are much more abstract. One has to visualize



Beyond the bounds of paperbut within the bounds of screens, The perfect match of TEX and Acrobat 9

its size and make some mental map of it. On computers, scroll bars can give some insight in the size of the

information at hand. At the cost of a lot of overhead in terms of pdfmarks, it is possible to provide scrollbars

in pdf. Because TEX is such a strong typographic language, only our fantasy is the limit.

Active figures

If we can make text active, why not make figures active too? In instructional texts it would be handy when

pointing to some part of an object (like a drawing of a machine, a photograph of some tool or a flowchart)

would bring us to an explanation of this part (and vice versa).

It is common practice to let TEX place figures. TEX handles figures as an abstraction: a figure has dimensions

and a name. Normally, figures are made with specialized programs and not by TEX. Usually \special is used

to communicate the characteristics of figures (name, scale and/or dimensions) to the dvi--processor.

7 Figuren

Het is mogelijk van en naar figuren te springen, bijvoorbeeld als er een verwijzing in de trant van zie
figuur 7.1 in de tekst is opgenomen. Door op het nummer te klikken gaat men naar de bladzijde waarop
de figuur2 staat afgebeeld.

Figuur 7.1 Het produktieproces.

2 Wie meer wil weten over het gebruik van illustraties in teksten zou eens wat moeten lezen van E.R. Tufte.

inhoud

index

10

0 5 10 15 20 25
0

5

10

15

20

1

2

3

4

proces

1 → (10.7,9.4) (4.3,2.3) [r:psfile]

2 → (16.5,16.5) (4.3,2.3) [r:pdffile]

3 ← (10.7,9.4) (4.3,2.3) [m:psfile]

4 ← (16.5,16.5) (4.3,2.3) [m:pdffile]

Figuur 9 Active figures.

It’s not very handy to fall back on drawing--packages when we want to make figures interactive. First, drawing

packages don’t support this. Second, if they do, scaling is not possible outside such a package unless buttons

defined by pdfmark do scale too. Fortunately, TEX can do what we want.

One way to make figures interactive is to overlay them with an invisible grid with a fixed number of (let’s say

25) ticks. This grid can be scaled along with the figure. We now can define active areas (tagged by a label) in

terms of coordinates and dimensions. The same can be done with areas that are referred to. These reference

areas (of type \to) can be used in the common way.

Page backgrounds

As we mentioned before we need a more sophisticated pagebody when we display texts on screen. Apart from

extra headers and footers —we call those top and bottom— and extra left and right margins —we call them

borders— we implemented a background mechanism. Each area on screen can be provided with a (different)

background, i.e. greyscale, pattern and/or color. Functional use of backgrounds facilitates the reader to identify

the different areas of information like text and navigation areas.

Layers

We already introduced parallel documents as a way to offer various versions of a text. For example when users

tend to make prints from the electronic document and the screen layout does not suffice on paper, a parallel

document with an A4--layout has to be (electronically) available.

Another nice feature would be some kind of layers (like in drawing packages) in which one document forms a

layer over another document, and so on. Each document containing more in depth and complicated information

to provide users information on their own intellectual level.

Such a feature can only be implemented with a reliable system for text management and production.



10 PRAGMA ADE

mlll ll l r rr rrr

mlll ll l r rr rrr

mlll ll l r rr rrr

mlll ll l r rr rrr

tweede

LLL LL L 1 R RR RRR

tweede

1 Eerste

papierhoogte 29.69577 cm 845.04684 pt

papierbreedte 20.99701 cm 597.50787 pt

kopwit 2.49963 cm 71.13188 pt

rugwit 5.99915 cm 170.71652 pt

zethoogte 23.99658 cm 682.86613 pt

zetbreedte 8.99872 cm 256.0748 pt

teksthoogte 21.04474 cm 598.86613 pt

tekstbreedte 8.99872 cm 256.0748 pt

bovenafstand 0.21085 cm 6.0 pt

hoofd 1.26508 cm 36.0 pt

hoofdafstand 0.42169 cm 12.0 pt

boven 0.84338 cm 24.0 pt

voetafstand 0.42169 cm 12.0 pt

voethoogte 0.84338 cm 24.0 pt

onderafstand 0.21085 cm 6.0 pt

onder 0.84338 cm 24.0 pt

linkerrand 2.99957 cm 85.35826 pt

linkerrandafstand 0.21085 cm 6.0 pt

linkermarge 1.68677 cm 48.0 pt

linkermargeafstand 0.84338 cm 24.0 pt

rechtermargeafstand 0.42169 cm 12.0 pt

rechtermarge 2.10846 cm 60.0 pt

rechterrandafstand 0.21085 cm 6.0 pt

rechterrand 2.10846 cm 60.0 pt

printcorrectie 0.0 cm 0.0 pt

Verwijzingen

> eerste

tweede

LLL LL L R RR RRR

tweede

Versie: 19 september 1995 1

mlll ll l r rr rrr

mlll ll l r rr rrr

mlll ll l r rr rrr

mlll ll l r rr rrr

eerste tweede

RRR RR R 2 L LL LLL

eerste

tweede

eerste

tweede

RRR RR R L LL LLL

eerste tweede

Versie: 19 september 1995 2

Figuur 10 The ConTEXt--Pagebody.

Figure manipulation

Due to the poor quality of screens and typographical aspects pictures are often displayed in such a way that

the user does not get the detailed information it contains. For instance an electrical schema or a draughting of

a house are normally printed in a large format. On screen it is displayed as a very small picture and it would be

nice if we could enlarge (parts of) these pictures. Several options like: . . . click to full--screen and . . . click to

normal screen or . . . click to enlarge a marked quadrant of the picture and . . . click to go back to normal again,

could be implemented. Although some of these options are available at the moment, pdf lacks this functionality.

For now pictures are still, but when they start to move (video) picture manipulation and monitoring become

obvious features (enlarge, reduce, pause, forward, backward, slow motion, sound, etc.).

Linked lists

One of the advantages of TEX is that large (complex) documents can be generated (typeset, structured, etc.)

automatically. We make use of that capability to make electronic documents accessible.

When interacting with an electronic document you need a lot of navigational tools like tables of contents (toc’s)

to find your way in the document. In Q--handbooks we tend to offer a great deal of toc’s, which means that we

offer them at every level. Huge handbooks are not limited to 3 or 4 levels (\subsubsubsubsection) but often

have many more levels. A flexible unlimited structuring mechanism is a necessity.

Imagine a text in which every section starts with a toc of its subsections (and so on). Jumping to the previous

toc’s can be accomplished using automatically generated prefixes at each level. This way one can use the

reference label ‘toc’ for every toc and one has to define a menu only once. The unique prefix garantees a

unique jump.

A bit more complicated is a situation where we want to jump from a toc to a toc on a higher level. This can

be done by system--generated references. At the toc--page the reference toc points to the previous one, on the



Beyond the bounds of paperbut within the bounds of screens, The perfect match of TEX and Acrobat 11

next pages toc points to the toc itself. Robust mechanisms for numbering (i.e. a unique sectionnumbering)

and selective toc--generation have to be linked to the pagebody routines of TEX.

Standards in references

Production and Q--handbooks often refer to the Dutch nen--, the German din-- and the international iso--stan-

dards. If these standards become electronically available and if the pdf--format is supported we could jump

from the handbooks to the standards if necessary. For these kind of jumps we need information on the way

references are produced within the standards.

So when we want to make links (jumps) to exact locations in the standards some sort of protocol must be defined

and published. Standards often contain numbered articles, items and subitems in numbered chapters and

paragraphs. A reference for example could be: chapnum:parnum:itemnum:subitemnum. Because automatic

numbering is no problem in TEX, automatic generation of these kind of digitized links can be generated too

(i.e. the named destination in Acrobat). However if the standards change and the numbering changes with the

standards all references from the handbooks to these standards have to be adapted too. So reference--labels

with unchangeable logical names would be more appropriate.

Reader profiles

Tables of contents, menus and indices are examples of structuring elements of texts. In huge, complex and

continuously changing documents, there is another one: the reader profile. In terms of text, such a profile tells

specific readers what parts of the document are worth reading. In portable documents, viewing programs can

take us by the hand and show us what’s to be read.

To me, Acrobats ‘article thread’ mechanism seems originally meant for connecting columns in periodicals. When

we look at examples of interactive periodicals, we often see a one to one similarity of the paper and portable

version. This means that articles start on one page and continue on a following one. Because of their cramped

pages, the article mechanism is useful: one starts at the column, that is or can be magnified for better reading,

and jumps from column to column and page to page. This is just one more example of the page--oriented

character of pdf.

We can abuse this mechanism for reader profiles. When we produce the text, we can tag parts of it by logical

names. A collection of such tags, connected to a starting point, forms a reader profile. Clicking on the starting

point starts the article reading mechanism and the reader just has to click to follow the path. At the moment

the mechanism works but misses some userfriendliness, this as a result of Acrobats pagewise behaviour. We

are in need for some mechanism that spans pages and provides some background color of gray when viewing

the threaded text.

Version control

A variant of reader profiles is version control. We can mark the adapted parts of a document and offer readers

the option of reading only these. This mechanism works in concert with a mechanism for selective printing of

updated pages. Version control works by numbers and not by tags. This makes it possible to offer more than

one reading path: version 1.2 and higher, 1.3 and higher, 2.0 and higher and so on.

A combination of version control and reader profiles are supported too. A reader can read only the updated

parts of his or her profile. This is useful in for instance updated manuals.

Color

Color can also be used to make texts more attractive. Of course color can be used in figures. Used with care

and with consistency in mind, color can enhance texts. It’s common use to mark active words in a text by color.



12 PRAGMA ADE

When using colored figures, we can use a colorbar to tell readers which parts of a figure are active. This means

that we must use our color with care, especially in figures. Although not unique to portable documents, the

color mechanism used in TEX must support consistent use of colors. One has to keep in mind that not Acrobat

but TEX is responsible for the quality of typesetting. This nearly always means that the users of TEX are to blame

for poor esthetics and not TEX and Acrobat.

Conclusion

As we mentioned before, pdf and its accompanying Acrobat programs, have to prove their stability yet. Users of

TEX know that quality and stability are no garantee for a wide acceptance. On the other hand the nearly perfect

match of TEX and Acrobat will undoubtedly lead to acceptance in the TEX--community.

We already mentioned that the pdf format is still under development. Some obvious options are still missing

and the present options are not yet explored to their limits. One of the mayor problems we will face in the (near)

future is incompatibility. We can use new options, but can not be sure if readers have the most recent version

of the viewers. (Paper documents don’t have this problem, except when we change the language.) Maybe this is

no real problem because the basic viewer is in the public domain and can be distributed with the documents.

A maybe even bigger problem is that we don’t know what kind of viewing devices will come available. With tools

like TEX at least we can explore the bounds of the devices already available.


